Novel GPER Agonist, CITFA, Increases Neurite Growth in Rat Embryonic (E18) Hippocampal Neurons

新型 GPER 激动剂 CITFA 可促进大鼠胚胎 (E18) 海马神经元的神经突生长

阅读:6
作者:Chelsea DeLeon, Kyle Pemberton, Michael Green, Vanja Kalajdzic, Martina Rosato, Fenglian Xu, Christopher Arnatt

Abstract

Numerous studies have reported neuroprotective and procognitive effects of estrogens. The estrogen 17β-estradiol (E2) activates both the classical nuclear estrogen receptors ERα and ERβ as well as the G protein-coupled estrogen receptor (GPER). The differential effects of targeting the classical estrogen receptors over GPER are not well-understood. A limited number of selective GPER compounds have been described. In this study, 10 novel compounds were synthesized and exhibited half-maximal effective concentration values greater than the known GPER agonist G-1 in calcium mobilization assays performed in nonadherent HL-60 cells. Of these compounds, 2-cyclohexyl-4-isopropyl-N-((5-(tetrahydro-2H-pyran-2-yl)furan-2-yl)methyl)aniline, referred to as CITFA, significantly increased axonal and dendritic growth in neurons extracted from embryonic day 18 (E18) fetal rat hippocampal neurons. Confirmation of the results was performed by treating E18 hippocampal neurons with known GPER-selective antagonist G-36 and challenging with either E2, G-1, or CITFA. Results from these studies revealed an indistinguishable difference in neurite outgrowth between the treatment and control groups, exhibiting that neurite outgrowth in response to G-1 and CITFA originates from GPER activation and can be abolished with pretreatment of an antagonist. Subsequent docking studies using a homology model of GPER showed unique docking poses between G-1 and CIFTA. While docking poses differed between the ligands, CIFTA exhibited more favorable distance, bond angle, and strain for hydrogen-bonding and hydrophobic interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。