ATP-dependent chromatin remodeling by Cockayne syndrome protein B and NAP1-like histone chaperones is required for efficient transcription-coupled DNA repair

Cockayne 综合征蛋白 B 和 NAP1 样组蛋白伴侣进行的 ATP 依赖性染色质重塑是有效转录偶联 DNA 修复所必需的

阅读:6
作者:Iltaeg Cho, Pei-Fang Tsai, Robert J Lake, Asjad Basheer, Hua-Ying Fan

Abstract

The Cockayne syndrome complementation group B (CSB) protein is essential for transcription-coupled DNA repair, and mutations in CSB are associated with Cockayne syndrome--a devastating disease with complex clinical features, including the appearance of premature aging, sun sensitivity, and numerous neurological and developmental defects. CSB belongs to the SWI2/SNF2 ATP-dependent chromatin remodeler family, but the extent to which CSB remodels chromatin and whether this activity is utilized in DNA repair is unknown. Here, we show that CSB repositions nucleosomes in an ATP-dependent manner in vitro and that this activity is greatly enhanced by the NAP1-like histone chaperones, which we identify as new CSB-binding partners. By mapping functional domains and analyzing CSB derivatives, we demonstrate that chromatin remodeling by the combined activities of CSB and the NAP1-like chaperones is required for efficient transcription-coupled DNA repair. Moreover, we show that chromatin remodeling and repair protein recruitment mediated by CSB are separable activities. The collaboration that we observed between CSB and the NAP1-like histone chaperones adds a new dimension to our understanding of the ways in which ATP-dependent chromatin remodelers and histone chaperones can regulate chromatin structure. Taken together, the results of this study offer new insights into the functions of chromatin remodeling by CSB in transcription-coupled DNA repair as well as the underlying mechanisms of Cockayne syndrome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。