Melatonin Inhibits OGD/R-Induced H9c2 Cardiomyocyte Pyroptosis via Regulation of MT2/miR-155/FOXO3a/ARC Axis

褪黑激素通过调节 MT2/miR-155/FOXO3a/ARC 轴抑制 OGD/R 诱导的 H9c2 心肌细胞焦亡

阅读:6
作者:Rui Chen, Min Yang

Abstract

Emerging literature suggests that pyroptosis plays a critical role in ischemia/hypoxia (I/R) -induced myocardial injury. Melatonin has been implicated in attenuating I/R-induced injury of cardiomyocytes. Nevertheless, whether melatonin inhibits I/R-induced pyroptosis of cardiomyocytes and the underlying molecular mechanisms remain unexploited.H9c2 cardiomyocytes were cultured under oxygen-glucose deprivation/reperfusion (OGD/R) condition to establish a myocardial pyroptosis model in vitro. OGD/R-induced pyroptosis was evaluated by CCK-8 assay, IL-1β and IL-18 release, and western blotting. Luciferase reporter assay was utilized to validate the association between miR-155 and Forkhead box O3a (FOXO3a).Melatonin could inhibit OGD/R-induced pyroptosis of H9c2 cells and upregulation of FOXO3a contributed to the antipyroptotic effect of melatonin. Melatonin reduced miR-155 expression, which led to FOXO3a upregulation and inhibition of pyroptosis in OGD/R-exposed H9c2 cells. miR-155 inhibitor enhanced the antipyroptotic effect of melatonin in OGD/R-exposed H9c2 cells. Melatonin-induced downregulation of miR-155 and upregulation of FOXO3a were reversed by melatonin receptor 2 (MT2) siRNA. Melatonin treatment also led to an increased level of apoptosis repressor with caspase recruitment domain (ARC), which was inhibited by FOXO3a siRNA. Moreover, silencing ARC by siRNA significantly blocked the antipyroptotic actions of melatonin, whereas ARC overexpression enhanced the antipyroptotic actions of melatonin in OGD/R-exposed H9c2 cells.Our findings demonstrated that melatonin prevented OGD/R-induced pyroptosis via regulating the MT2/miR-155/FOXO3a/ARC axis in cardiomyocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。