Microorganism-enabled photosynthetic oxygeneration and ferroptosis induction reshape tumor microenvironment for augmented nanodynamic therapy

微生物促进的光合氧合和铁死亡诱导重塑肿瘤微环境以增强纳米动力治疗

阅读:5
作者:Shuting Lu, Wei Feng, Xijuan Yao, Xinran Song, Jinhe Guo, Yu Chen, Zhongqian Hu

Abstract

Nanodynamic therapy (NDT) based on reactive oxygen species (ROS) generation has been envisioned as a distinct modality for efficient cancer treatment. However, insufficient ROS generation and partial ROS consumption frequently limit the theraputic effect and outcome of NDT owing to the low oxygen (O2) tension and high glutathione (GSH) level in tumor microenvironment (TME). To circumvent these critical issues, we herein proposed and engineered the biodegradable GSH-depletion Mn(III)-riched manganese oxide nanospikes (MnOx NSs) with the photosynthetic bacterial cyanobacteria (Cyan) as a high-efficient and synergistic platform to reshape TME by simultaneously increasing oxygen content and decreasing GSH level. Specifically, under the trigger of acidity, MnOx NSs reacted with photosynthetic oxygen can generate toxic singlet oxygen (1O2). Moreover, MnOx NSs significantly reduced intracellular GSH, resulting in decreased GPX4 activity, which induced tumor cell non-apoptotic ferroptosis. Consequently, this combined strategy based on coadministration with Cyan and MnOx NSs demonstrated the superior antitumor efficacy via amplification of oxidative stress in 4T1 tumor-bearing mice for the synergetic oxygen-augmented nanodynamic/ferroptosis therapy. This work highlights a facile synergistic micro-/nano-system with the specific capability of reshaping TME to augment the sensitivity and therapeutic efficacy of NDT in solid hypoxic tumor therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。