Identification of novel class inhibitors of NSD3 methyltransferase showing a unique, bivalent binding mode in the SET domain

鉴定出 NSD3 甲基转移酶的新型抑制剂,其在 SET 结构域中表现出独特的二价结合模式

阅读:6
作者:Sumin Kim, Injeoung Hwang, Suhn Hyung Kim, Hwan Won Chung, Mi-Jung Ji, Sojeong Moon, Hyun-Mee Park, Gu Kong, Wooyoung Hur

Abstract

NSD3/WHSC1L1 lysine methyltransferase promotes the transcription of target genes through di- or tri-methylation at histone H3K36 using SAM as a cofactor. Genetic alterations such as amplification and gain-of-function mutation of NSD3 act as oncogenic drivers in several cancers including squamous cell lung cancer and breast cancer. NSD3 is an important therapeutic target for cancers, but the reported NSD3 inhibitors targeting the catalytic SET domain are very rare and show a poor activity. Herein, from a virtual library screening and the subsequent medicinal chemistry optimization, we identified a novel class of NSD3 inhibitors. Our docking analysis and pulldown result suggested that the most potent analogue 13i shows a unique, bivalent binding mode interacting with both SAM-binding site and BT3-bindig site within the SET domain. We found 13i inhibits NSD3 activity with IC50 = 287 μM in vitro and suppresses the proliferation of JIMT1 breast cancer cells with GI50 = 36.5 μM, which express a high level of NSD3. Also, 13i downregulated the levels of H3K36me2/3 in a dose-dependent manner. Our study could provide an insight in designing high-affinity NSD3 inhibitors. Also, as the acrylamide group of 13i was predicted to position near Cys1265 in the BT3-binding site, further optimization would lead to a discovery of novel irreversible NSD3 inhibitors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。