Cell cycle-dependent regulation of SFK, JAK1 and STAT3 signalling by the protein tyrosine phosphatase TCPTP

蛋白酪氨酸磷酸酶 TCPTP 对 SFK、JAK1 和 STAT3 信号传导的细胞周期依赖性调节

阅读:5
作者:Ben J Shields, Naomi W Court, Christine Hauser, Patricia E Bukczynska, Tony Tiganis

Abstract

Janus-activated kinases (JAKs) and Src family kinases (SFKs) and their common substrate signal transducer and activator of transcription (STAT)-3 are frequently hyperactivated in human cancer contributing to the proliferative drive by promoting G(1)/S and G(2)/M progression. Previous studies have established that the protein tyrosine phosphatase TCPTP can dephosphorylate and inactivate the SFK and JAK protein tyrosine kinases (PTKs) to attenuate cytokine signalling in vivo. In this study we determined whether TCPTP regulates SFK and JAK signalling during the cell cycle. We used primary mouse embryonic fibroblasts (MEFs) isolated from TCPTP(-/-) versus +/+ mice, immortalised TCPTP(-/-) MEFs versus those reconstituted with physiological levels of TCPTP and HeLa cells in which TCPTP protein levels had been suppressed by RNA interference, to establish TCPTP as a negative regulator of SFK, JAK1 and STAT3 signalling during the cell cycle. We found that the progression of TCPTP-deficient MEFs after the G(1) restriction point into S-phase was enhanced. We used RNA interference and pharmacological inhibitors to demonstrate that elevated SFK and downstream phosphatidylinositol 3-kinase signalling but not JAK1 or STAT3 signalling were required for the enhanced G(1)/S transition. These results identify TCPTP as a negative regulator of the cell cycle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。