Highly conductive tissue-like hydrogel interface through template-directed assembly

通过模板引导组装形成高导电性组织状水凝胶界面

阅读:6
作者:Jooyeun Chong #, Changhoon Sung #, Kum Seok Nam, Taewon Kang, Hyunjun Kim, Haeseung Lee, Hyunchang Park, Seongjun Park, Jiheong Kang

Abstract

Over the past decade, conductive hydrogels have received great attention as tissue-interfacing electrodes due to their soft and tissue-like mechanical properties. However, a trade-off between robust tissue-like mechanical properties and good electrical properties has prevented the fabrication of a tough, highly conductive hydrogel and limited its use in bioelectronics. Here, we report a synthetic method for the realization of highly conductive and mechanically tough hydrogels with tissue-like modulus. We employed a template-directed assembly method, enabling the arrangement of a disorder-free, highly-conductive nanofibrous conductive network inside a highly stretchable, hydrated network. The resultant hydrogel exhibits ideal electrical and mechanical properties as a tissue-interfacing material. Furthermore, it can provide tough adhesion (800 J/m2) with diverse dynamic wet tissue after chemical activation. This hydrogel enables suture-free and adhesive-free, high-performance hydrogel bioelectronics. We successfully demonstrated ultra-low voltage neuromodulation and high-quality epicardial electrocardiogram (ECG) signal recording based on in vivo animal models. This template-directed assembly method provides a platform for hydrogel interfaces for various bioelectronic applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。