Berberine Attenuates Hyperglycemia by Inhibiting the Hepatic Glucagon Pathway in Diabetic Mice

小檗碱通过抑制糖尿病小鼠的肝脏胰高血糖素通路来减轻高血糖症

阅读:6
作者:Ying Zhong, Jing Jin, Peiyu Liu, Yu Song, Hui Zhang, Liang Sheng, Huifang Zhou, Bijie Jiang

Abstract

Dysregulated glucagon drives hyperfunction in hepatic glucose output, which is the main cause of persistent hyperglycemia in type 2 diabetes. Berberine (Zhang et al., 2010) has been used as a hypoglycemic agent, yet the mechanism by which BBR inhibits hepatic gluconeogenesis remains incompletely understood. In this study, we treated diabetic mice with BBR, tested blood glucose levels, and then performed insulin, glucose lactate, and glucagon tolerance tests. Intracellular cAMP levels in hepatocytes were determined by ELISA, hepatic gluconeogenetic genes were assayed by RT-qPCR, and the phosphorylation of CREB, which is the transcriptional factor controlling the expression of gluconeogenetic genes, was detected by western blot. BBR reduced blood glucose levels, improved insulin and glucose tolerance, and suppressed lactate- and glucagon-induced hepatic gluconeogenesis in ob/ob and STZ-induced diabetic mice. Importantly, BBR blunted glucagon-induced glucose production and gluconeogenic gene expression in hepatocytes, presumably through reducing cAMP, which resulted in the phosphorylation of CREB. By utilizing a cAMP analogue, adenylate cyclase (AC), to activate cAMP synthetase, and an inhibitor of the cAMP degradative enzyme, phosphodiesterase (PDE), we revealed that BBR accelerates intracellular cAMP degradation. BBR reduces the intracellular cAMP level by activating PDE, thus blocking activation of downstream CREB and eventually downregulating gluconeogenic genes to restrain hepatic glucose production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。