Conclusion
FGF6 inhibits the Hippo pathway via ERK1/2, and facilitates nuclear translocation of YAP, and thereby promotes cardiac repair after MI.
Methods
Expression of FGF6 protein was analysed in mice with MI induced by ligation of the left anterior descending coronary artery. Activation of the Hippo pathway and the proliferation potential were examined in ischemic CMs, treated with FGF6 protein or transfected with an adeno-virus carrying FGF6 sh-RNA. Immunofluorescence staining and western blotting were performed to assess the relationship between FGF6 and the Hippo pathway.
Results
We found that FGF6 expression was significantly increased in the MI mouse model. Knockdown of FGF6 synthesis resulted in poorer heart function after MI. By contrast, treatment with recombinant human FGF6 protein improved heart function, reduced infarct size, and promoted cardiac repair. Additionally, FGF6 restrains the activation of the Hippo pathway and subsequently promotes nuclear accumulation of YAP. This was largely counteracted by treatment with extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126.
