Sevoflurane-induced regulation of NKCC1/KCC2 phosphorylation through activation of Spak/OSR1 kinase and cognitive impairment in ischemia-reperfusion injury in rats

七氟烷通过激活 Spak/OSR1 激酶诱导调节 NKCC1/KCC2 磷酸化和大鼠缺血再灌注损伤中的认知障碍

阅读:7
作者:Yuefeng Wang, Yuanyu Zhang, Wei Yu, Mengjuan Dong, Pingping Cheng, Ye Wang

Abstract

The occurrence of excitotoxic damage caused by cerebral ischemia-reperfusion (I/R) injury is closely linked to a decrease in central inhibitory function, in which the concentration of chloride inside the cells ([Cl-]i) plays a crucial role. The outflow and inflow of [Cl-]i are controlled by KCC2 and NKCC1, which are cellular cotransporters for K+/Cl- and Na+/K+/Cl-, respectively. NKCC1/KCC2 is regulated by upstream regulators such as SPAK and OSR1, whose activity is influenced by I/R. Sevoflurane is the most commonly used and controversial general anesthetic. To elucidate the impact of sevoflurane on cerebral ischemia-reperfusion (I/R) injury and its underlying mechanism, we investigated its influence on cognitive function and the mechanism of action utilizing a rat model of I/R. By activating the kinase Spak/OSR1, we discovered that I/R damage enhanced the function of NKCC1 and inhibited the function of KCC2, which triggered an imbalance of [Cl-]i concentration, leading to neurological dysfunction and cognitive dysfunction. At the beginning of reperfusion, administration of 1.3 MAC sevoflurane for 3 h increased activation of Spak/OSR1 kinases on day 7 post-perfusion, resulting in an additional dysregulation of NKCC1 and KCC2 activity, which disappeared on day 14. Administration of Closantel, a Spak/OSR1 kinase inhibitor, to animals treated with sevoflurane reverses the additional stimulation. The research revealed that sevoflurane modified the functioning of NKCC1 and KCC2, resulting in cognitive decline by activating Spak/OSR1 kinase. However, this issue could be resolved by inhibiting Spak/OSR1. The research revealed that sevoflurane transiently alters the function of NKCC1 and KCC2, resulting in exacerbating cognitive decline. However, this can be fixed by suppressing Spak/OSR1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。