MicroRNA-26a regulates glucose metabolism by direct targeting PDHX in colorectal cancer cells

MicroRNA-26a 通过直接靶向结直肠癌细胞中的 PDHX 来调节葡萄糖代谢

阅读:4
作者:Bing Chen, Yuling Liu, Xuewen Jin, Weiliang Lu, Jingjing Liu, Zijing Xia, Qiong Yuan, Xia Zhao, Ningzhi Xu, Shufang Liang

Background

Reprogramming energy metabolism has been an emerging hallmark of cancer cells. MicroRNAs play important roles in glucose metabolism.

Conclusions

MiR-26a regulates glucose metabolism of colorectal cancer cells by direct targeting the PDHX, which inhibits the conversion of pyruvate to acetyl coenzyme A in the citric acid cycle.

Methods

The targets of microRNA-26a (miR-26a) were predicted by bioinformatics tools. The efficacy of miR-26a binding the 3'-untranslated region (UTR) of pyruvate dehydrogenase protein X component (PDHX) mRNA was evaluated using a dual-luciferase reporter assay. The PDHX expression at the mRNA and protein level in several colon cancer cell lines was quantified with real-time PCR and Western blot analysis respectively. The effects of miR-26a on glucose metabolism were determined by detecting the content of glucose consumption, production of lactate, pyruvate, and acetyl-coenzyme A.

Results

The expression of miR-26a is inversely associated with the level of its targeting protein PDHX in several colon cancer cell lines with different malignancy potentials. MiR-26a inhibits PDHX expression by direct targeting the 3'-UTR of PDHX mRNA. The glucose consumption and lactate concentration were both greatly increased in colon cancer cells than the normal colon mucosal epithelia under physiological conditions. The overexpression of miR-26a in HCT116 cells efficiently improved the accumulation of pyruvate and decreased the production of acetyl coenzyme A. Meanwhile the inhibition of miR-26a expression induced inverse biological effects. Conclusions: MiR-26a regulates glucose metabolism of colorectal cancer cells by direct targeting the PDHX, which inhibits the conversion of pyruvate to acetyl coenzyme A in the citric acid cycle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。