Conclusion
Three CASR missense variants identified in probands provisionally diagnosed with FHH result in receptor inactivation and are therefore likely causative of FHH. Inactivation may be due to inadequate processing/trafficking of mature receptor and/or conformational changes induced by the variants affecting receptor signaling. This study demonstrates the value of functional studies in assessing genetic variants identified in hypercalcemic patients.
Methods
Bioinformatics assessment utilized wANNOVAR software. For functional characterization, each variant was cloned into a mammalian expression vector; wild-type and variant receptors were transfected into HEK293 cells, and their expression and cellular localization were assessed by Western blotting and confocal immunofluorescence, respectively. Receptor activation in HEK293 cells was determined using an IP-One ELISA assay following stimulation with Ca++ ions.
Objective
We identified 3 novel CASR transmembrane domain missense variants, Thr699Asn, Arg701Gly, and Thr808Pro, in 3 probands provisionally diagnosed with FHH and examined the variants using bioinformatics and functional analysis.
Results
Bioinformatics analysis of the variants was unable to definitively assign pathogenicity. Compared with wild-type receptor, all variants demonstrated impaired expression of mature receptor reaching the cell surface and diminished activation at physiologically relevant Ca++ concentrations.
