Bruton tyrosine kinase inhibitors preserve anti-CD19 chimeric antigen receptor T-cell functionality and reprogram tumor micro-environment in B-cell lymphoma

布鲁顿酪氨酸激酶抑制剂保留抗 CD19 嵌合抗原受体 T 细胞功能并重新编程 B 细胞淋巴瘤中的肿瘤微环境

阅读:3
作者:Wenjing Luo, Chenggong Li, Jianghua Wu, Lu Tang, Xindi Wang, Yinqiang Zhang, Zhuolin Wu, Zhongpei Huang, Jia Xu, Yun Kang, Wei Xiong, Jun Deng, Yu Hu, Heng Mei

Aims

Combination therapy is being actively explored to improve the efficacy and safety of anti-CD19 chimeric antigen receptor T-cell (CART19) therapy, among which Bruton tyrosine kinase inhibitors (BTKIs) are highly expected. BTKIs may modulate T-cell function and remodel the tumor micro-environment (TME), but the exact mechanisms involved and the steps required to transform different BTKIs into clinical applications need further investigation.

Conclusions

Our data revealed that BTKIs preserved T-cell and CART19 functionality under persistent antigen exposure and further demonstrated that BTKI administration was a potential strategy for mitigating cytokine release syndrome after CART19 treatment. Our study lays the experimental foundation for the rational application of BTKIs combined with CART19 in clinical practice.

Methods

We examined the impacts of BTKIs on T-cell and CART19 phenotype and functionality in vitro and further explored the mechanisms. We evaluated the efficacy and safety of CART19 concurrent with BTKIs in vitro and in vivo. Moreover, we investigated the effects of BTKIs on TME in a syngeneic lymphoma model.

Results

Here we identified that the three BTKIs, ibrutinib, zanubrutinib and orelabrutinib, attenuated CART19 exhaustion mediated by tonic signaling, T-cell receptor (TCR) activation and antigen stimulation. Mechanistically, BTKIs markedly suppressed CD3-ζ phosphorylation of both chimeric antigen receptor and TCR and downregulated the expression of genes associated with T-cell activation signaling pathways. Moreover, BTKIs decreased interleukin 6 and tumor necrosis factor alpha release in vitro and in vivo. In a syngeneic lymphoma model, BTKIs reprogrammed macrophages to the M1 subtype and polarized T helper (Th) cells toward the Th1 subtype. Conclusions: Our data revealed that BTKIs preserved T-cell and CART19 functionality under persistent antigen exposure and further demonstrated that BTKI administration was a potential strategy for mitigating cytokine release syndrome after CART19 treatment. Our study lays the experimental foundation for the rational application of BTKIs combined with CART19 in clinical practice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。