Alterations in Hematopoietic and Mesenchymal Stromal Cell Components of the Osteopetrotic Bone Marrow Niche

骨质硬化骨髓微环境的造血和间充质基质细胞成分的改变

阅读:5
作者:Inci Cevher Zeytin, Berna Alkan, Cansu Ozdemir, Duygu Uckan Cetinkaya, Fatma Visal Okur

Abstract

Osteopetrosis is a rare inherited disease characterized by impaired osteoclast activity causing defective bone resorption and bone marrow aplasia. It is fatal in early childhood unless hematopoietic stem cell transplantation is performed. But, the transplant course is complicated with engraftment failure. Recently, osteoclasts have been described as the potential regulators of hematopoietic stem cell (HSC) niche. Here we investigated the alterations in the HSC and mesenchymal stromal cell (MSC) components of osteopetrotic niche and their interactions to mimic the stem cell dynamics/trafficking in the BM niche after HSC transplantation. Induced pluripotent stem cells were generated from peripheral blood mononuclear cells of patients with osteopetrosis carrying TCIRG1 mutation. iPSC lines were differentiated into hematopoietic and myeloid progenitors, then into osteoclasts using a step-wise protocol. We first demonstrated a shift toward monocyte-macrophages lineage regarding hematopoietic differentiation potential of osteopetrotic iPSC-derived hematopoietic progenitors (HPCs) and phenotypically normal and functionally defective osteoclast formation. The expression of the genes involved in HSC homing and maintenance (Sdf-1, Jagged-1, Kit-L, and Opn) in osteopetrotic MSCs recovered significantly after coculture with healthy HPCs. Similarly, the restoration of phenotype, impaired differentiation, and migratory potential of osteopetrotic iHPCs were observed upon interaction with healthy MSCs. Our results establish significant alterations in both MSC and HPC compartments of the osteopetrotic niche, and support the impact of functionally impaired osteoclasts in defective niche formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。