pH-Sensitive Nanoparticles Composed Solely of Membrane-Disruptive Macromolecules for Treating Pancreatic Cancer

仅由膜破坏大分子组成的 pH 敏感纳米粒子可用于治疗胰腺癌

阅读:6
作者:Feng Fan, Lijun Jin, Lihua Yang

Abstract

Pancreatic tumor is extremely lethal because its cancerous structures are sheltered by dense stromal barriers that hinder the infiltration of therapeutics. To facilitate the infiltration of therapeutics through the stromal barrier, remodeling the stroma with an adjuvant prior to or together with gemcitabine-the current chemotherapeutic standard for pancreatic cancer-is a widely studied strategy; nevertheless, the intrinsic nonuniformity in distribution (spatial and/or temporal) of the adjuvant and gemcitabine has raised the increased risk of tumor metastasis as a major concern. In this work, we propose long-circulating, pH-sensitive nanoparticles composed solely of cellular membrane-disruptive molecules as a new approach for treating pancreatic cancer. Using a micelle of a polymeric mimetic of host defense peptides as the model for such nanoparticles, we showed that this nanoparticle exhibited acid-activated cytotoxicity indiscriminately to both cancerous and fibroblast cells, and the underlying activity mode was acid-activatable disruption of cellular membrane integrity. As a result, our acid-activatable nanoparticle effectively permeabilized the stromal barrier and eradicated the otherwise sheltered pancreatic cancer cells, as demonstrated with a three-dimensional spheroid in which a shell of fibroblast NIH-3T3 cells was cultured over a core of pancreatic BxPC-3 cells. When administered intravenously into mouse models bearing xenograft pancreatic BxPC-3 tumors, our acid-activatable nanoparticle efficiently inhibited tumor growth without causing noticeable off-target adverse effects or promoting tumor metastasis. Notably, this nanoparticle permeabilized the otherwise dense pancreatic tumor tissue while significantly suppressing the expression of extracellular matrix components and activated cancer-associated fibroblasts. Although the feasibility of our approach was demonstrated with a micelle of a polymeric molecule, we trust that future research efforts in this pathway may eventually offer translational formulations for improving the therapeutic efficacy of pancreatic cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。