Hypoxia-preconditioned olfactory mucosa mesenchymal stem cells abolish cerebral ischemia/reperfusion-induced pyroptosis and apoptotic death of microglial cells by activating HIF-1α

缺氧预处理的嗅粘膜间充质干细胞通过激活 HIF-1α 消除脑缺血/再灌注引起的细胞焦亡和小胶质细胞凋亡

阅读:5
作者:Yan Huang, Fengbo Tan, Yi Zhuo, Jianyang Liu, Jialin He, Da Duan, Ming Lu, Zhiping Hu

Abstract

Microglial cells are the first line immune cells that initiate inflammatory responses following cerebral ischemia/reperfusion(I/R) injury. Microglial cells are also associated with a novel subtype of pro-inflammatory programmed cell death known as pyroptosis. Research has been directed at developing treatments that modulate inflammatory responses and protect against cell death caused by cerebral I/R. Key among such treatments include mesenchymal stem cell (MSC) therapy. A unique type of MSC termed olfactory mucosa mesenchymal stem cell (OM-MSC) confers neuroprotection by promoting the secretion of paracrine factors, and neuroprotection. This study investigated whether hypoxic OM-MSCs could inhibit microglial cell death upon I/R insult in vitro. A traditional oxygen-glucose deprivation/reperfusion (OGD/R) model, analogous to I/R, was established. Results showed that OGD/R induced apoptosis and pyroptosis in microglial cells while hypoxia in OM-MSCs significantly attenuated these effects. Moreover, the effects of OM-MSCs were mediated by Hypoxia-inducible factor 1-alpha (HIF-1α). Taken together, these findings reveal that hypoxia-preconditioned OM-MSC inhibits pyroptotic and apoptotic death of microglial cell in response to cerebral ischemia/reperfusion insult by activating HIF-1α in vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。