PM2.5 induced weight loss of mice through altering the intestinal microenvironment: Mucus barrier, gut microbiota, and metabolic profiling

PM2.5 通过改变肠道微环境导致小鼠体重减轻:粘液屏障、肠道微生物群和代谢特征

阅读:6
作者:Shuiping Dai, Zhenglu Wang, Ying Yang, Peng Du, Xiqing Li

Abstract

The experimental evidences linking PM2.5 exposure to weight status disorder and the associated mechanisms were lacked. Here, we demonstrated exposure of 198.52 μg/m3 PM2.5 (Baoji city, China) for 40 days induced body weight loss of male Balb/C mice, and then increased after 14-day recovery. Correspondingly, gut microbiota dysbiosis, ileum metabolism alterations, and histopathological changes of liver and ileum elucidated the underlying mechanism. The richness and function modules of flora in feces significantly reduced after exposure, and the ratios of Bacteroidetes/Firmicutes reduced from 1.58 to 0.79. At genus level, Lactobacillus and Clostridium increased markedly, while Bacteroides and Parabacteroides decreased at day 40. After recovery, Oscillospira became the dominant genus. Additionally, the key metabolites in the ileum mediated by PM2.5 identified by metabolomics included arachidonic acid, prostaglandin H2, prostaglandin F2α, 5(S)-HPETE, AMP, and deoxyadenosine. Accordingly, conjoint analysis between the gut micorbiota and metabolic profiling revealed suppression of Arachidonic acid metabolism, linoleic acid metabolism, and PPAR signaling pathway and stimulation of ABC transporters might contribute to the liver injury, ileum inflammation, and then weight loss of mice. Our findings suggested PM2.5 affected weight status of mice by meditating intestinal microenvironment, and provided new insight for further diagnosis of the air pollution dependent disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。