Downregulation of SUV39H1 and CITED2 Exerts Additive Effect on Promoting Adipogenic Commitment of Human Mesenchymal Stem Cells

SUV39H1 和 CITED2 的下调对促进人类间充质干细胞的脂肪形成具有附加作用

阅读:5
作者:Lun Tan, Linh Tran, Stephanie Ferreyra, Jose A Moran, Zachary Skovgaard, Amparo Trujillo, Esra Ibili, Yuanxiang Zhao

Abstract

Human adipogenesis is the process through which uncommitted human mesenchymal stem cells (hMSCs) differentiate into adipocytes. Through a siRNA-based high-throughput screen that identifies adipogenic regulators whose expression knockdown leads to enhanced adipogenic differentiation of hMSCs, two new regulators, SUV39H1, a histone methyltransferase that catalyzes H3K9Me3, and CITED2, a CBP/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 were uncovered. Both SUV39H1 and CITED2 are normally downregulated during adipogenic differentiation of hMSCs. Further expression knockdown induced by siSUV39H1 or siCITED2 at the adipogenic initiation stage significantly enhanced adipogenic differentiation of hMSCs as compared with siControl treatment, with siSUV39H1 acting by both accelerating fat accumulation in individual adipocytes and increasing the total number of committed adipocytes, whereas siCITED2 acting predominantly by increasing the total number of committed adipocytes. In addition, both siSUV39H1 and siCITED2 were able to redirect hMSCs to undergo adipogenic differentiation in the presence of osteogenic inducing media, which normally only induces osteogenic differentiation of hMSCs in the absence of siSUV39H1 or siCITED2. Interestingly, simultaneous knockdown of both SUV39H1 and CITED2 resulted in even greater levels of adipogenic differentiation of hMSCs and expression of CEBPα and PPARγ, two master regulators of adipogenesis, as compared with those elicited by single gene knockdown. Furthermore, the effects of co-knockdown were equivalent to the additive effect of individual gene knockdown. Taken together, this study demonstrates that SUV39H1 and CITED2 are both negative regulators of human adipogenesis, and downregulation of both genes exerts an additive effect on promoting adipogenic differentiation of hMSCs through augmented commitment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。