Experience-dependent Tip60 nucleocytoplasmic transport is regulated by its NLS/NES sequences for neuroplasticity gene control

经验依赖的 Tip60 核质运输受其 NLS/NES 序列调控,以控制神经可塑性基因

阅读:4
作者:Ellen M Armour, Christina M Thomas, Gabrielle Greco, Akanksha Bhatnagar, Felice Elefant

Abstract

Nucleocytoplasmic transport (NCT) in neurons is critical for enabling proteins to enter the nucleus and regulate plasticity genes in response to environmental cues. Such experience-dependent (ED) neural plasticity is central for establishing memory formation and cognitive function and can influence the severity of neurodegenerative disorders like Alzheimer's disease (AD). ED neural plasticity is driven by histone acetylation (HA) mediated epigenetic mechanisms that regulate dynamic activity-dependent gene transcription profiles in response to neuronal stimulation. Yet, how histone acetyltransferases (HATs) respond to extracellular cues in the in vivo brain to drive HA-mediated activity-dependent gene control remains unclear. We previously demonstrated that extracellular stimulation of rat hippocampal neurons in vitro triggers Tip60 HAT nuclear import with concomitant synaptic gene induction. Here, we focus on investigating Tip60 HAT subcellular localization and NCT specifically in neuronal activity-dependent gene control by using the learning and memory mushroom body (MB) region of the Drosophila brain as a powerful in vivo cognitive model system. We used immunohistochemistry (IHC) to compare the subcellular localization of Tip60 HAT in the Drosophila brain under normal conditions and in response to stimulation of fly brain neurons in vivo either by genetically inducing potassium channels activation or by exposure to natural positive ED conditions. Furthermore, we found that both inducible and ED condition-mediated neural induction triggered Tip60 nuclear import with concomitant induction of previously identified Tip60 target genes and that Tip60 levels in both the nucleus and cytoplasm were significantly decreased in our well-characterized Drosophila AD model. Mutagenesis of a putative nuclear localization signal (NLS) sequence and nuclear export signal (NES) sequence that we identified in the Drosophila Tip60 protein revealed that both are functionally required for appropriate Tip60 subcellular localization. Our results support a model by which neuronal stimulation triggers Tip60 NCT via its NLS and NES sequences to promote induction of activity-dependent neuroplasticity gene transcription and that this process may be disrupted in AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。