Protective effects of human induced pluripotent stem cell-derived exosomes on high glucose-induced injury in human endothelial cells

人诱导性多能干细胞来源的外泌体对高糖诱导的人内皮细胞损伤的保护作用

阅读:8
作者:Qianqian Ding, Ruiting Sun, Pingping Wang, Heng Zhang, Meng Xiang, Dan Meng, Ning Sun, Alex F Chen, Sifeng Chen

Abstract

Exosomes are a family of extracellular vesicles that are secreted from almost all types of cells and are associated with cell-to-cell communication. The present study was performed to investigate the effects of human induced pluripotent stem cell-derived exosomes (hiPSC-exo) on cell viability, capillary-like structure formation and senescence in endothelial cells exposed to high glucose. Exosomes were isolated from the conditional medium of hiPSCs and confirmed by transmission electron microscopy, nanoparticle tracking analysis and western blot analysis using Alix and cluster of differentiation-63 as markers. hiPSC-exo were labeled with PKH26 for tracking, and it was determined that spherical exosomes, with a typical cup-shape, were absorbed by human umbilical vascular endothelial cells (HUVECs). Cultured HUVECs were treated with high glucose (33 mM) with or without hiPSC-exo (20 µg/ml) for 48 h, and cell viability, capillary tube formation and senescence were assessed. When exposed to high glucose, viability and tube formation in HUVECs was significantly reduced (P<0.0001), whereas the proportion of senescent cells was higher compared with that in control HUVECs (P<0.0001). Furthermore, hiPSC-exo restored cell viability and capillary-like structure formation, and reduced senescence in HUVECs exposed to high glucose (P<0.0001). However, hiPSC-exo had minimal effects on normal HUVECs. These findings suggest that stem cell-derived exosomes are able to promote cell proliferation, enhance capillary-like structure formation and reduce senescence in endothelial cells exposed to high glucose.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。