Opposing HDAC4 nuclear fluxes due to phosphorylation by β-adrenergic activated protein kinase A or by activity or Epac activated CaMKII in skeletal muscle fibres

由于 β-肾上腺素能活化蛋白激酶 A 的磷酸化或 Epac 激活的 CaMKII 在骨骼肌纤维中引起的 HDAC4 核通量相反

阅读:8
作者:Yewei Liu, Martin F Schneider

Abstract

Class IIa histone deacetylases (HDACs) move between skeletal muscle fibre cytoplasm and nuclei in response to various stimuli, suppressing activity of the exclusively nuclear transcription factor Mef2. Protein kinase A (PKA) phosphorylates class IIa HDACs in cardiac muscle, resulting in HDAC nuclear accumulation, but this has not been examined in skeletal muscle. Using HDAC4-green fluorescent protein (HDAC4-GFP) expressed in isolated skeletal muscle fibres, we now show that activation of PKA by the beta-receptor agonist isoproterenol or dibutyryl (Db) cAMP causes a steady HDAC4-GFP nuclear influx. The beta-receptor blocker propranolol or PKA inhibitor Rp-cAMPS blocks the effects of isoproterenol on the nuclear influx of HDAC4-GFP, and Rp-cAMPS blocks the effects of Db cAMP. The HDAC4-GFP construct having serines 265 and 266 replaced with alanines, HDAC4 (S265/266A)-GFP, did not respond to beta-receptor or PKA activation. Immunoprecipitation results show that HDAC4-GFP is a substrate of PKA, but HDAC4 (S265/266A)-GFP is not, implicating HDAC4 serines 265/266 as the site(s) phosphorylated by PKA. During 10 Hz trains of muscle fibre electrical stimulation, the nuclear efflux rate of HDAC4-GFP, but not of HDAC4 (S265/266)-GFP, was decreased by PKA activation, directly demonstrating antagonism between the effects of fibre stimulation and beta-adrenergic activation of PKA on HDAC4 nuclear fluxes. 8-CPT, a specific activator of Epac, caused nuclear efflux of HDAC4-GFP, opposite to the effect of PKA. Db cAMP increased both phosphorylated PKA and GTP-bound Rap1. Our results demonstrate that the PKA and CaMKII pathways play important opposing roles in skeletal muscle gene expression by oppositely affecting the subcellular localization of HDAC4.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。