Conclusions
This first description of the role of UCP2 in oxygen sensing and in pulmonary hypertension vascular remodeling may open a new window in biomarker and therapeutic strategies.
Objective
We hypothesized that UCP2 deficiency reduces Ca²⁺m in pulmonary artery smooth muscle cells (PASMCs), mimicking the effects of hypoxia and ER stress on mitochondria in vitro and in vivo, promoting normoxic hypoxia inducible factor-1α activation and pulmonary hypertension.
Results
Ucp2 knockout (KO)-PASMCs had lower mitochondrial calcium than Ucp2 wildtype (WT)-PASMCs at baseline and during histamine-stimulated ER-Ca²⁺ release. Normoxic Ucp2KO-PASMCs had mitochondrial hyperpolarization, lower Ca²⁺-sensitive mitochondrial enzyme activity, reduced levels of mitochondrial reactive oxygen species and Krebs' cycle intermediates, and increased resistance to apoptosis, mimicking the hypoxia-induced changes in Ucp2WT-PASMC. Ucp2KO mice spontaneously developed pulmonary vascular remodeling and pulmonary hypertension and exhibited a pseudohypoxic state with pulmonary vascular and systemic hypoxia inducible factor-1α activation (increased hematocrit), not exacerbated further by chronic hypoxia. Conclusions: This first description of the role of UCP2 in oxygen sensing and in pulmonary hypertension vascular remodeling may open a new window in biomarker and therapeutic strategies.
