A Wireless, Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy

用于癌症治疗实时监测的无线多色荧光图像传感器植入物

阅读:10
作者:Micah Roschelle, Rozhan Rabbani, Surin Gweon, Rohan Kumar, Alec Vercruysse, Nam Woo Cho, Matthew H Spitzer, Ali M Niknejad, Vladimir M Stojanović, Mekhail Anwar

Abstract

Real-time monitoring of dynamic biological processes in the body is critical to understanding disease progression and treatment response. This data, for instance, can help address the lower than 50% response rates to cancer immunotherapy. However, current clinical imaging modalities lack the molecular contrast, resolution, and chronic usability for rapid and accurate response assessments. Here, we present a fully wireless image sensor featuring a 2.5×5 mm2 CMOS integrated circuit for multicolor fluorescence imaging deep in tissue. The sensor operates wirelessly via ultrasound (US) at 5 cm depth in oil, harvesting energy with 221 mW/cm2 incident US power density (31% of FDA limits) and backscattering data at 13 kbps with a bit error rate <10-6. In-situ fluorescence excitation is provided by micro-laser diodes controlled with a programmable on-chip driver. An optical frontend combining a multi-bandpass interference filter and a fiber optic plate provides >6 OD excitation blocking and enables three-color imaging for detecting multiple cell types. A 36×40-pixel array captures images with <125 μm resolution. We demonstrate wireless, dual-color fluorescence imaging of both effector and suppressor immune cells in ex vivo mouse tumor samples with and without immunotherapy. These results show promise for providing rapid insight into therapeutic response and resistance, guiding personalized medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。