Tethering transforming growth factor β1 to soft hydrogels guides vascular smooth muscle commitment from human mesenchymal stem cells

将转化生长因子 β1 束缚于软水凝胶可引导人类间充质干细胞分化为血管平滑肌

阅读:5
作者:Yonghui Ding, Richard Johnson, Sadhana Sharma, Xiaoyun Ding, Stephanie J Bryant, Wei Tan

Significance

A fast, reliable and safe regeneration of vascular smooth muscle cells (vSMCs) from stem cell differentiation is promising for vascular tissue engineering and regenerative medicine applications, but remains challenging. Herein, a photo-click hydrogel platform is devised to recapitulate the stiffness of vascular tissue and appropriate presentation of transforming growth factor β1 (TGF-β1) to guide vSMC commitment from mesenchymal stem cells (MSCs). We demonstrate that such concomitant method drastically enhanced regeneration of mature, functional vSMCs from MSCs in vitro and in vivo within only a 3-days span. This work is not only of fundamental scientific importance, revealing how physiochemical factors and the manner of their presentation direct stem cell differentiation, but also attacks the long-standing difficulty in regenerating highly functional vSMCs within a short period.

Statement of significance

A fast, reliable and safe regeneration of vascular smooth muscle cells (vSMCs) from stem cell differentiation is promising for vascular tissue engineering and regenerative medicine applications, but remains challenging. Herein, a photo-click hydrogel platform is devised to recapitulate the stiffness of vascular tissue and appropriate presentation of transforming growth factor β1 (TGF-β1) to guide vSMC commitment from mesenchymal stem cells (MSCs). We demonstrate that such concomitant method drastically enhanced regeneration of mature, functional vSMCs from MSCs in vitro and in vivo within only a 3-days span. This work is not only of fundamental scientific importance, revealing how physiochemical factors and the manner of their presentation direct stem cell differentiation, but also attacks the long-standing difficulty in regenerating highly functional vSMCs within a short period.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。