Abstract
Epidermal growth factor receptor (EGFR) and downstream signal transducer and activator of transcription 3 (STAT3) signaling have been extensively implicated in various human neoplasms. Recently, a novel EGFR inhibitor, known as afatinib, has exhibited broad antitumor activities in a variety of tumors. Therefore, the present study attempted to investigate the impact of this agent on intrahepatic cholangiocarcinoma (ICC). Initially, immunohistochemical assays were performed on 15 human ICC specimens and their adjacent tissues in order to assess the protein levels of phosphorylated EGFR (pEGFR) and pSTAT3. Subsequently, the human ICC cell lines JCK and OZ were exposed to different doses of afatinib, and then cell viability and apoptosis were determined by MTT assay and flow cytometry, respectively. Furthermore, immunoblotting was applied to detect any variations in the phosphorylated protein levels of EGFR and STAT3 in afatinib-treated ICC cells. The results of the current study demonstrated that ICC specimens had evidently increased pEGFR and pSTAT3 protein levels as compared with the adjacent noncancerous tissues. Further in vitro experiments indicated that afatinib evidently blocked ICC cell growth and induced cell apoptosis. At the protein level, pEGFR and pSTAT3 were evidently attenuated by afatinib-administration. In conclusion, the present study clearly determined that afatinib exerts an antitumor effect on ICC cells by silencing the EGFR-STAT3 signaling pathway. This novel agent deserves further investigation as a potential therapeutic strategy for ICC.
