Ultra-high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry-characterized extract of Aerides odorata Lour alleviates paracetamol-induced hepatotoxicity in animal model evidenced by biochemical, molecular, and computational studies

超高效液相色谱-四极杆飞行时间质谱表征的 Aerides odorata Lour 提取物可减轻动物模型中对乙酰氨基酚引起的肝毒性,这已得到生化、分子和计算研究的证实

阅读:5
作者:A M Abu Ahmed, Md Atiar Rahman, Farjana Sharmen, A S M Ali Reza, Md Shahidul Islam, Md Mamunur Rashid, Md Khalid Juhani Rafi, Tanvir Ahmed Siddiqui, Md Muzahid Ahmed Ezaj, Srabonti Saha, Md Nazim Uddin, Walla Alelwani

Background

Many kinds of orchids have significant health benefits although adequate research on their biological functions is yet to be carried out. This study investigated the paracetamol-induced liver damage-protecting effect of epiphytic Aerides odorata methanol extract (AODE).

Conclusion

The findings demonstrate that AODE could be a novel hepatoprotective target in drug-induced liver damage with a further single compound-based animal study.

Methods

The protective effects of AODE were studied by analyzing its effect on liver function parameters, messenger RNA (mRNA) expression, and tissue histopathological architecture. The

Results

AODE significantly (p < 0.05) minimized the dose-dependent increase in acid phosphatase, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, γ-glutamyl transferase, lactate dehydrogenase, and total bilirubin compared to the reference drug silymarin. Malondialdehyde level decreased, and the antioxidant genes catalase (CAT), superoxide dismutase (SOD), β-actin, paraoxonase-1 (PON1), and phosphofructokinase-1 (PFK-1) were upregulated in AODE-treated paracetamol-intoxicated rats. A total of 376 compounds comprising phenols and flavonoids were identified using ultra-high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-qTOF-MS). The online toxicity assessment using SwissADME and admetSAR exhibited drug-like, nontoxic, and potential pharmacological properties. Additionally, in silico analysis showed that isoacteoside, one of the identified compounds, exhibited the best docking score (-11.42) with the liver protein human pituitary adenylate cyclase-1 (Protein Data Bank ID: 3N94). Furthermore, network pharmacology analysis identified the top 10 hub genes, namely AKT1 (protein kinase B), CTNNB1 (catenin beta-1), SRC (proto-oncogene c-Src), TNF (tumor necrosis factor), EGFR (epidermal growth factor receptor), HSP90AA1 (heat shock protein 90α), MAPK3 (mitogen-activated protein kinase 3), STAT3 (signal transducer and activator of transcription 3), CASP3 (caspase protein), and ESR1 (estrogen receptor 1), which are responsible for hepatoprotective activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。