MAPK13 stabilization via m6A mRNA modification limits anticancer efficacy of rapamycin

通过 m6A mRNA 修饰稳定 MAPK13 限制了雷帕霉素的抗癌功效

阅读:4
作者:Joohwan Kim, Yujin Chun, Cuauhtemoc B Ramirez, Lauren A Hoffner, Sunhee Jung, Ki-Hong Jang, Varvara I Rubtsova, Cholsoon Jang, Gina Lee

Abstract

N6-adenosine methylation (m6A) is the most abundant mRNA modification that controls gene expression through diverse mechanisms. Accordingly, m6A-dependent regulation of oncogenes and tumor suppressors contributes to tumor development. However, the role of m6A-mediated gene regulation upon drug treatment or resistance is poorly understood. Here, we report that m6A modification of mitogen-activated protein kinase 13 (MAPK13) mRNA determines the sensitivity of cancer cells to the mechanistic target of rapamycin complex 1 (mTORC1)-targeting agent rapamycin. mTORC1 induces m6A modification of MAPK13 mRNA at its 3' untranslated region through the methyltransferase-like 3 (METTL3)-METTL14-Wilms' tumor 1-associating protein(WTAP) methyltransferase complex, facilitating its mRNA degradation via an m6A reader protein YTH domain family protein 2. Rapamycin blunts this process and stabilizes MAPK13. On the other hand, genetic or pharmacological inhibition of MAPK13 enhances rapamycin's anticancer effects, which suggests that MAPK13 confers a progrowth signal upon rapamycin treatment, thereby limiting rapamycin efficacy. Together, our data indicate that rapamycin-mediated MAPK13 mRNA stabilization underlies drug resistance, and it should be considered as a promising therapeutic target to sensitize cancer cells to rapamycin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。