Establishment of porcine nuclear transfer-derived embryonic stem cells using induced pluripotent stem cells as donor nuclei

利用诱导性多能干细胞作为供体细胞核建立猪核移植胚胎干细胞

阅读:6
作者:Seiki Haraguchi, Thanh Quang Dang-Nguyen, David Wells, Daiichiro Fuchimoto, Tomokazu Fukuda, Tomoyuki Tokunaga

Abstract

We investigated whether sequential reprogramming via porcine induced pluripotent stem cells (piPSCs) or exposure to oocyte cytoplasm following nuclear transfer could generate nuclear transfer-derived ESCs (piPSCs-ntESCs). Nuclear transfer embryos were reconstructed with piPSCs possessing a ZsGreen fluorescent marker for expression of exogenous Nanog and Lin28. Reconstructed oocytes developed to morphologically normal 8-cell/morulae (35/93, 37.6%) and blastocysts (12/93, 12.9%). Although most green fluorescent protein-positive blastocysts showed efficient outgrowth (8/10, 80%), none formed primary colonies and all cultures degenerated. Conversely, 15% of fluorescent positive 8-cell/morula stage embryos showed outgrowth (6/40), with three forming primary colonies (7.5%). All three were expanded and maintained as piPSC-ntESC lines. These cell lines expressed stem cell marker genes and proteins. Despite inactivation of one X chromosome, all piPSC-ntESC lines formed teratomas comprising derivatives from all three embryonic germ layers. Strong SSEA1, 3, and 4 expression was detected at the 8-cell/morula stage in embryos reconstructed from both piPSCs and porcine embryonic fibroblasts (PEFs). SSEA3 was notably absent from IVF controls at pre-implantation embryo stages. Finally, we attempted to establish ntESCs from 8-cell/morulae reconstructed with PEFs using the same culture conditions as those for piPSC-ntESC derivation. Although eight primary colonies arose from 107 embryos (7.5%), they all degenerated after the first passage culture. Early and sustained expression of key reprogramming regulatory factors may be critical for pluripotent stem cell derivation to derive piPSC-ntESCs from 8-cell/morula stages, while the expression of SSEAs may be involved in the initial stem cell colony formation phases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。