Pentagalloylglucose disrupts the PALB2-BRCA2 interaction and potentiates tumor sensitivity to PARP inhibitor and radiotherapy

五没食子酰葡萄糖破坏 PALB2-BRCA2 相互作用并增强肿瘤对 PARP 抑制剂和放射疗法的敏感性

阅读:5
作者:Jie Zeng, Jichang Han, Zhaorui Liu, Meng Yu, Hao Li, Jianzhong Yu

Abstract

DNA damage repair plays a vital role in maintaining the genomic integrity of cells and has been exploited therapeutically in the treatment of cancer. We have previously demonstrated that the upregulation of CXorf67 in posterior fossa type A ependymoma sensitizes tumor cells to PARP inhibitors by suppressing the PALB2-BRCA2 protein-protein interaction (PPI). Here, we performed structure-based virtual screening of ∼2 million small molecular entities followed by NanoBiT-based screening, and determined that pentagalloylglucose (PGG) disrupts the PALB2-BRCA2 PPI. Structure-based molecular docking and in vitro binding affinity assays revealed that PGG occupies a well-defined binding groove in the tips of the fourth and fifth blades of the PALB2 WD40 domain. PGG reduces BRCA2 recruitment to DNA damage sites and inhibits the formation of RAD51 foci, suppressing homologous recombination repair. PGG also inhibits proliferation and survival in several cancer cell lines, including breast cancer and medulloblastoma cells, and suppresses the in vivo growth of tumor xenografts. Thus, PGG is a specific inhibitor of the PALB2-BRCA2 PPI, which has potential value in cancer treatment to sensitize tumors to PARP inhibitors and radiotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。