Significance
Women with postmenopausal osteoporosis are at a high risk for fracture as their bone resorption rate exceeds bone formation rate. Osteoprotegerin (OPG), a known therapeutic agent capable of inhibiting osteoclast cells, has been used in treatment of chronic bone resorptive diseases. To inhibit excessive bone resorption and increase bone formation, we developed a novel therapeutic strategy by genetically modifying bone marrow stem cells (BMSCs) for OPG delivery and seeding the cells on a hydroxyapatite (HA) scaffold for in vivo bone defect repair. The novel OPG-BMSC-HA constructs were able to orchestrate bone-forming BMSCs and bone-resorbing osteoclasts, demonstrating good potential for osteoporosis-related bone defect reconstruction treatments.
Statement of significance
Women with postmenopausal osteoporosis are at a high risk for fracture as their bone resorption rate exceeds bone formation rate. Osteoprotegerin (OPG), a known therapeutic agent capable of inhibiting osteoclast cells, has been used in treatment of chronic bone resorptive diseases. To inhibit excessive bone resorption and increase bone formation, we developed a novel therapeutic strategy by genetically modifying bone marrow stem cells (BMSCs) for OPG delivery and seeding the cells on a hydroxyapatite (HA) scaffold for in vivo bone defect repair. The novel OPG-BMSC-HA constructs were able to orchestrate bone-forming BMSCs and bone-resorbing osteoclasts, demonstrating good potential for osteoporosis-related bone defect reconstruction treatments.
