Melatonin reduces the endoplasmic reticulum stress and polyubiquitinated protein accumulation induced by repeated anesthesia exposure in Caenorhabditis elegans

褪黑素减轻秀丽隐杆线虫反复麻醉暴露引起的内质网应激和多泛素化蛋白质积累

阅读:7
作者:Hyun-Jung Shin, Bon-Wook Koo, Jiwon Yoon, Heeyeon Kim, Sang-Hwan Do, Hyo-Seok Na

Abstract

Endoplasmic reticulum (ER) stress has been linked to anesthesia-induced neurotoxicity, but melatonin seems to play a protective role against ER stress. Synchronized Caenorhabditis elegans were exposed to isoflurane during the developmental period; melatonin treatment was used to evaluate its role in preventing the defective unfolded protein response (UPR) and ER-associated protein degradation (ERAD). The induced expression of hsp-4::GFP by isoflurane was attenuated in the isoflurane-melatonin group. Isoflurane upregulated the expression of ire-1, whereas melatonin did not induce ire-1 expression in C. elegans even after isoflurane exposure. With luzindole treatment, the effect of melatonin on the level of ire-1 was significantly attenuated. The reduced expression of sel-1, sel-11, cdc-48.1, and cdc-48.2 due to isoflurane was restored by melatonin, although not up to the level of the control group. The amount of polyubiquitinated proteins was increased in the isoflurane group; however, melatonin suppressed its accumulation, which was significantly inhibited by a proteasome inhibitor, MG132. The chemotaxis index of the isoflurane-melatonin group was improved compared with the isoflurane group. Melatonin may be a potential preventive molecule against defective UPR and ERAD caused by repeated anesthesia exposure. The ire-1 branch of the UPR and ERAD pathways can be the target of melatonin to reduce anesthesia-induced ER stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。