Xanthine oxidase contributes to mechanical ventilation-induced diaphragmatic oxidative stress and contractile dysfunction

黄嘌呤氧化酶导致机械通气引起的膈肌氧化应激和收缩功能障碍

阅读:7
作者:Melissa A Whidden, Joseph M McClung, Darin J Falk, Matthew B Hudson, Ashley J Smuder, W Bradley Nelson, Scott K Powers

Abstract

Respiratory muscle weakness resulting from both diaphragmatic contractile dysfunction and atrophy has been hypothesized to contribute to the weaning difficulties associated with prolonged mechanical ventilation (MV). While it is clear that oxidative injury contributes to MV-induced diaphragmatic weakness, the source(s) of oxidants in the diaphragm during MV remain unknown. These experiments tested the hypothesis that xanthine oxidase (XO) contributes to MV-induced oxidant production in the rat diaphragm and that oxypurinol, a XO inhibitor, would attenuate MV-induced diaphragmatic oxidative stress, contractile dysfunction, and atrophy. Adult female Sprague-Dawley rats were randomly assigned to one of six experimental groups: 1) control, 2) control with oxypurinol, 3) 12 h of MV, 4) 12 h of MV with oxypurinol, 5) 18 h of MV, or 6) 18 h of MV with oxypurinol. XO activity was significantly elevated in the diaphragm after MV, and oxypurinol administration inhibited this activity and provided protection against MV-induced oxidative stress and contractile dysfunction. Specifically, oxypurinol treatment partially attenuated both protein oxidation and lipid peroxidation in the diaphragm during MV. Further, XO inhibition retarded MV-induced diaphragmatic contractile dysfunction at stimulation frequencies >60 Hz. Collectively, these results suggest that oxidant production by XO contributes to MV-induced oxidative injury and contractile dysfunction in the diaphragm. Nonetheless, the failure of XO inhibition to completely prevent MV-induced diaphragmatic oxidative damage suggests that other sources of oxidant production are active in the diaphragm during prolonged MV.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。