New markers for regulation of transcription and macromolecule metabolic process in porcine oocytes during in vitro maturation

猪卵母细胞体外成熟过程中转录和大分子代谢过程调控的新标记

阅读:6
作者:Maciej Brązert, Wiesława Kranc, Mariusz J Nawrocki, Patrycja Sujka-Kordowska, Aneta Konwerska, Maurycy Jankowski, Ievgeniia Kocherova, Piotr Celichowski, Michal Jeseta, Katarzyna Ożegowska, Paweł Antosik, Dorota Bukowska, Mariusz T Skowroński, Małgorzata Bruska, Leszek Pawelczyk, Maciej Zabel, Hanna

Abstract

Oocyte maturation is essential for proper fertilization, embryo implantation and early development. While the physiological conditions of these processes are relatively well‑known, its exact molecular mechanisms remain widely undiscovered. Oocyte growth, differentiation and maturation are therefore the subject of scientific debate. Precious literature has indicated that the oocyte itself serves a regulatory role in the mechanisms underlying these processes. Hence, the present study performed expression microarrays to analyze the complete transcriptome of porcine oocytes during their in vitro maturation (IVM). Pig material was used for experimentation, as it possesses similarities to the reproductive processes and general genetic proximities of Sus scrofa to human. Oocytes, isolated from the ovaries of slaughtered animals were assessed via the Brilliant Cresyl Blue test and directed to IVM. A number of oocytes were left to be analyzed as the 'before IVM' group. Oocyte mRNA was isolated and used for microarray analysis, which was subsequently validated via RT‑qPCR. The current study particularly focused on genes belonging to 'positive regulation of transcription, DNA‑dependent', 'positive regulation of gene expression', 'positive regulation of macromolecule metabolic process' and 'positive regulation of transcription from RNA polymerase II promoter' ontologies. FOS, VEGFA, ESR1, AR, CCND2, EGR2, ENDRA, GJA1, INHBA, IHH, INSR, APP, WWTR1, SMARCA1, NFAT5, SMAD4, MAP3K1, EGR1, RORA, ECE1, NR5A1, KIT, IKZF2, MEF2C, SH3D19, MITF and PSMB4 were all determined to be significantly altered (fold change, >|2|; P<0.05) among these groups, with their downregulation being observed after IVM. Genes with the most altered expressions were analyzed and considered to be potential markers of maturation associated with transcription regulation and macromolecule metabolism process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。