A mitochondrial long-chain fatty acid oxidation defect leads to transfer RNA uncharging and activation of the integrated stress response in the mouse heart

线粒体长链脂肪酸氧化缺陷导致转移 RNA 释放并激活小鼠心脏中的综合应激反应

阅读:6
作者:Pablo Ranea-Robles, Natalya N Pavlova, Aaron Bender, Andrea S Pereyra, Jessica M Ellis, Brandon Stauffer, Chunli Yu, Craig B Thompson, Carmen Argmann, Michelle Puchowicz, Sander M Houten

Aims

Cardiomyopathy and arrhythmias can be severe presentations in patients with inherited defects of mitochondrial long-chain fatty acid β-oxidation (FAO). The pathophysiological mechanisms that underlie these cardiac abnormalities remain largely unknown. We investigated the molecular adaptations to a FAO deficiency in the heart using the long-chain acyl-CoA dehydrogenase (LCAD) knockout (KO) mouse model.

Conclusions

Our results show that perturbations in amino acid metabolism caused by long-chain FAO deficiency impact cardiac metabolic signalling, in particular the ISR. These results may serve as a foundation for investigating the role of the ISR in the cardiac pathology associated with long-chain FAO defects.Translational Perspective: The heart relies mainly on mitochondrial fatty acid β-oxidation (FAO) for its high energy requirements. The heart disease observed in patients with a genetic defect in this pathway highlights the importance of FAO for cardiac health. We show that the consequences of a FAO defect extend beyond cardiac energy homeostasis and include amino acid metabolism and associated signalling pathways such as the integrated stress response.

Results

We observed enrichment of amino acid metabolic pathways and of ATF4 target genes among the upregulated genes in the LCAD KO heart transcriptome. We also found a prominent activation of the eIF2α/ATF4 axis at the protein level that was independent of the feeding status, in addition to a reduction of cardiac protein synthesis during a short period of food withdrawal. These findings are consistent with an activation of the integrated stress response (ISR) in the LCAD KO mouse heart. Notably, charging of several transfer RNAs (tRNAs), such as tRNAGln was decreased in LCAD KO hearts, reflecting a reduced availability of cardiac amino acids, in particular, glutamine. We replicated the activation of the ISR in the hearts of mice with muscle-specific deletion of carnitine palmitoyltransferase 2. Conclusions: Our results show that perturbations in amino acid metabolism caused by long-chain FAO deficiency impact cardiac metabolic signalling, in particular the ISR. These results may serve as a foundation for investigating the role of the ISR in the cardiac pathology associated with long-chain FAO defects.Translational Perspective: The heart relies mainly on mitochondrial fatty acid β-oxidation (FAO) for its high energy requirements. The heart disease observed in patients with a genetic defect in this pathway highlights the importance of FAO for cardiac health. We show that the consequences of a FAO defect extend beyond cardiac energy homeostasis and include amino acid metabolism and associated signalling pathways such as the integrated stress response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。