The whole-cell Ca2+ release-activated Ca2+ current, ICRAC , is regulated by the mitochondrial Ca2+ uniporter channel and is independent of extracellular and cytosolic Na

全细胞 Ca2+ 释放激活 Ca2+ 电流 ICRAC 受线粒体 Ca2+ 单向转运通道调节,不依赖于细胞外和细胞浆 Na

阅读:8
作者:Krishna Samanta, Daniel Bakowski, Nader Amin, Anant B Parekh

Abstract

Key points: Ca2+ entry through Ca2+ release-activated Ca2+ channels activates numerous cellular responses. Under physiological conditions of weak intracellular Ca2+ buffering, mitochondrial Ca2+ uptake regulates CRAC channel activity. Knockdown of the mitochondrial Ca2+ uniporter channel prevented the development of ICRAC in weak buffer but not when strong buffer was used instead. Removal of either extracellular or intra-pipette Na+ had no effect on the selectivity, kinetics, amplitude, rectification or reversal potential of whole-cell CRAC current. Knockdown of the mitochondrial Na+ -Ca2+ exchanger did not prevent the development of ICRAC in strong or weak Ca2+ buffer. Whole cell CRAC current is Ca2+ -selective. Mitochondrial Ca2+ channels, and not Na+ -dependent transport, regulate CRAC channels under physiological conditions. Ca2+ entry through store-operated Ca2+ release-activated Ca2+ (CRAC) channels plays a central role in activation of a range of cellular responses over broad spatial and temporal bandwidths. Mitochondria, through their ability to take up cytosolic Ca2+ , are important regulators of CRAC channel activity under physiological conditions of weak intracellular Ca2+ buffering. The mitochondrial Ca2+ transporter(s) that regulates CRAC channels is unclear and could involve the 40 kDa mitochondrial Ca2+ uniporter (MCU) channel or the Na+ -Ca2+ -Li+ exchanger (NCLX). Here, we have investigated the involvement of these mitochondrial Ca2+ transporters in supporting the CRAC current (ICRAC ) under a range of conditions in RBL mast cells. Knockdown of the MCU channel impaired the activation of ICRAC under physiological conditions of weak intracellular Ca2+ buffering. In strong Ca2+ buffer, knockdown of the MCU channel did not inhibit ICRAC development demonstrating that mitochondria regulate CRAC channels under physiological conditions by buffering of cytosolic Ca2+ via the MCU channel. Surprisingly, manipulations that altered extracellular Na+ , cytosolic Na+ or both failed to inhibit the development of ICRAC in either strong or weak intracellular Ca2+ buffer. Knockdown of NCLX also did not affect ICRAC . Prolonged removal of external Na+ also had no significant effect on store-operated Ca2+ entry, on cytosolic Ca2+ oscillations generated by receptor stimulation or on CRAC channel-driven gene expression. In the RBL mast cell, Ca2+ flux through the MCU but not NCLX is indispensable for activation of ICRAC .

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。