miR-200/375 control epithelial plasticity-associated alternative splicing by repressing the RNA-binding protein Quaking

miR-200/375 通过抑制 RNA 结合蛋白 Quaking 来控制上皮可塑性相关的可变剪接

阅读:4
作者:Katherine A Pillman, Caroline A Phillips, Suraya Roslan, John Toubia, B Kate Dredge, Andrew G Bert, Rachael Lumb, Daniel P Neumann, Xiaochun Li, Simon J Conn, Dawei Liu, Cameron P Bracken, David M Lawrence, Nataly Stylianou, Andreas W Schreiber, Wayne D Tilley, Brett G Hollier, Yeesim Khew-Goodall, 

Abstract

Members of the miR-200 family are critical gatekeepers of the epithelial state, restraining expression of pro-mesenchymal genes that drive epithelial-mesenchymal transition (EMT) and contribute to metastatic cancer progression. Here, we show that miR-200c and another epithelial-enriched miRNA, miR-375, exert widespread control of alternative splicing in cancer cells by suppressing the RNA-binding protein Quaking (QKI). During EMT, QKI-5 directly binds to and regulates hundreds of alternative splicing targets and exerts pleiotropic effects, such as increasing cell migration and invasion and restraining tumour growth, without appreciably affecting mRNA levels. QKI-5 is both necessary and sufficient to direct EMT-associated alternative splicing changes, and this splicing signature is broadly conserved across many epithelial-derived cancer types. Importantly, several actin cytoskeleton-associated genes are directly targeted by both QKI and miR-200c, revealing coordinated control of alternative splicing and mRNA abundance during EMT These findings demonstrate the existence of a miR-200/miR-375/QKI axis that impacts cancer-associated epithelial cell plasticity through widespread control of alternative splicing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。