Conclusions
The study established that nsPEF stimulation caused calcium entry into cardiac myocytes (including routes other than voltage-gated calcium channels) and SSD. Tetrodotoxin-sensitive APs were mediated by SSD, whose amplitude depended on the calcium entry. Plasma membrane electroporation was the most likely primary mechanism of SSD with additional contribution from l-type calcium and sodium-calcium exchanger currents.
Results
Fluorescent imaging of optical APs (FluoVolt) and Ca2+ -transients (Fluo-4) was performed in enzymatically isolated murine ventricular cardiomyocytes stimulated by 200-nanosecond trapezoidal pulses. nsPEF stimulation evoked tetrodotoxin-sensitive APs accompanied or preceded by slow sustained depolarization (SSD) and, in most cells, by transient afterdepolarization waves. SSD threshold was lower than the AP threshold (1.26 ± 0.03 vs 1.34 ± 0.03 kV/cm, respectively, P < 0.001). Inhibition of l-type calcium and sodium-calcium exchanger currents reduced the SSD amplitude and increased the AP threshold ( P < 0.05). The threshold for Ca 2+ -transients (1.40 ± 0.04 kV/cm) was not significantly affected by a tetrodotoxin-verapamil cocktail, suggesting the activation of a Ca 2+ entry pathway independent from the opening of Na + or Ca 2+ voltage-gated channels. Removal of external Ca 2+ decreased the SSD amplitude ( P = 0.004) and blocked Ca 2+ -transients but not APs. The incidence of transient afterdepolarization waves was decreased by verapamil and by removal of external Ca 2+ ( P = 0.002). Conclusions: The study established that nsPEF stimulation caused calcium entry into cardiac myocytes (including routes other than voltage-gated calcium channels) and SSD. Tetrodotoxin-sensitive APs were mediated by SSD, whose amplitude depended on the calcium entry. Plasma membrane electroporation was the most likely primary mechanism of SSD with additional contribution from l-type calcium and sodium-calcium exchanger currents.
