Quantitative Phosphoproteomic Analysis in Alpha-Synuclein Transgenic Mice Reveals the Involvement of Aberrant p25/Cdk5 Signaling in Early-stage Parkinson's Disease

α-突触核蛋白转基因小鼠的定量磷酸化蛋白质组学分析揭示了异常 p25/Cdk5 信号传导与早期帕金森病的关系

阅读:3
作者:Feng He, Guangjian Qi, Qian Zhang, Hongwei Cai, Tongxia Li, Ming Li, Qiaofeng Zhang, Jingyu Chen, Jie Ming, Bo Tian, Pei Zhang

Abstract

A30P and A53T mutations in the gene encoding alpha-synuclein-a presynaptic protein-are the most frequently identified genetic causes of Parkinson's disease (PD). Aberrant alpha-synuclein likely plays central roles in dopaminergic neuronal death and motor symptoms in PD. This study investigated the protein phosphorylation profile in early-stage PD through phosphoproteomic analyses of tissue samples from the substantia nigra pars compacta (SNpc) of 6-month-old alpha-synuclein transgenic mice (A30P/A53T double-mutant human alpha-synuclein; hm2α-SYN-39 strain). We identified 5351 phosphorylation sites in 2136 phosphoproteins. Of these, 357 upregulated sites in 245 proteins and 50 downregulated sites in 46 proteins were differentially phosphorylated between alpha-synuclein transgenic and wildtype mice. Bioinformatic analyses, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, and motif analyses, were used to elucidate the molecular and cellular mechanisms underlying double-mutant human alpha-synuclein overexpression. Scansite-based computational analysis and prediction of differentially quantitated phosphoproteins identified the neuronal protein cyclin-dependent kinase 5 (Cdk5) as the most significantly enriched kinase. Biochemical experiments suggested that the p25/Cdk5 pathway was activated in an MPP+-induced cell culture model and MPTP-induced mouse model. Moreover, Cdk5 could directly phosphorylate the Ank2 protein at Ser1889 in vitro. Therefore, quantitative phosphoproteomic using an alpha-synuclein transgenic mouse model offers a powerful approach for elucidating the protein phosphorylation mechanism underlying SNpc dopaminergic neuronal death in an animal model of PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。