PI3K/AKT confers intrinsic and acquired resistance to pirtobrutinib in chronic lymphocytic leukemia

PI3K/AKT 使慢性淋巴细胞白血病对吡托替尼产生内在和获得性耐药性

阅读:9
作者:Chunfang Kong, Mei Wu, Qilin Lu, Bo Ke, Jianhui Xie, Anna Li

Conclusion

The PI3K/AKT pathway plays a crucial role in both intrinsic and acquired resistance to pirtobrutinib in CLL. Therapeutically targeting this pathway may offer a promising strategy to overcome pirtobrutinib resistance.

Methods

To investigate pirtobrutinib resistance, we established resistant cell models using BTK knock-out via CRISPR-Cas9 or chronic exposure to pirtobrutinib in MEC-1 cells. These models mimicked intrinsic or acquired resistance, respectively. We then analyzed differential protein expression between wild-type (WT) and resistant MEC-1 cells using Revers Phase Protein microArray (RPPA) and confirmed the findings through Western Blot. Additionally, we evaluated potential drugs to overcome pirtobrutinib resistance by conducting cell proliferation assays, apoptosis studies, and animal experiments using both sensitive and resistant cells.

Purpose

Pirtobrutinib, a non-covalent Bruton's tyrosine kinase (BTK) inhibitor, has been approved as the first agent to overcome resistance to covalent BTK inhibitors (such as ibrutinib, acalabrutinib, and zanubrutinib). However, the mechanisms of pirtobrutinib resistance in chronic lymphocytic leukemia (CLL) remain poorly understood.

Results

MEC-1 cells developed resistance to pirtobrutinib either through BTK knock-out or prolonged drug exposure over three months. RPPA analysis revealed significant activation of proteins related to the PI3K/AKT pathway, including AKT and S6, in the resistant cells. Western Blot confirmed increased phosphorylation of AKT and S6 in pirtobrutinib-resistant MEC-1 cells. Notably, both the PI3K inhibitor (CAL101) and the AKT inhibitor (MK2206) effectively reduced cell proliferation and induced apoptosis in the resistant cells. The anti-tumor efficacy of these drugs was mediated by inhibiting the PI3K/AKT pathway. In vivo animal studies further supported the potential of targeting PI3K/AKT to overcome both intrinsic and acquired resistance to pirtobrutinib.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。