Pharmacological and genetic characterisation of the canine P2X4 receptor

犬 P2X4 受体的药理学和遗传学特征

阅读:6
作者:Reece A Sophocleous, Tracey Berg, Rocio K Finol-Urdaneta, Vanessa Sluyter, Shikara Keshiya, Lachlan Bell, Stephen J Curtis, Belinda L Curtis, Aine Seavers, Rachael Bartlett, Mark Dowton, Leanne Stokes, Lezanne Ooi, Ronald Sluyter

Background and purpose

P2X4 receptors are emerging therapeutic targets for treating chronic pain and cardiovascular disease. Dogs are well-recognised natural models of human disease, but information regarding P2X4 receptors in dogs is lacking. To aid the development and validation of P2X4 receptor ligands, we have characterised and compared canine and human P2X4 receptors. Experimental approach: Genomic DNA was extracted from whole blood samples from 101 randomly selected dogs and sequenced across the P2RX4 gene to identify potential missense variants. Recombinant canine and human P2X4 receptors tagged with Emerald GFP were expressed in 1321N1 and HEK293 cells and analysed by immunoblotting and confocal microscopy. In these cells, receptor pharmacology was characterised using nucleotide-induced Fura-2 AM measurements of intracellular Ca2+ and known P2X4 receptor antagonists. P2X4 receptor-mediated inward currents in HEK293 cells were assessed by automated patch clamp. Key

Purpose

P2X4 receptors are emerging therapeutic targets for treating chronic pain and cardiovascular disease. Dogs are well-recognised natural models of human disease, but information regarding P2X4 receptors in dogs is lacking. To aid the development and validation of P2X4 receptor ligands, we have characterised and compared canine and human P2X4 receptors. Experimental approach: Genomic DNA was extracted from whole blood samples from 101 randomly selected dogs and sequenced across the P2RX4 gene to identify potential missense variants. Recombinant canine and human P2X4 receptors tagged with Emerald GFP were expressed in 1321N1 and HEK293 cells and analysed by immunoblotting and confocal microscopy. In these cells, receptor pharmacology was characterised using nucleotide-induced Fura-2 AM measurements of intracellular Ca2+ and known P2X4 receptor antagonists. P2X4 receptor-mediated inward currents in HEK293 cells were assessed by automated patch clamp. Key

Results

No P2RX4 missense variants were identified in any canine samples. Canine and human P2X4 receptors were localised primarily to lysosomal compartments. ATP was the primary agonist of canine P2X4 receptors with near identical efficacy and potency at human receptors. 2'(3')-O-(4-benzoylbenzoyl)-ATP, but not ADP, was a partial agonist with reduced potency for canine P2X4 receptors compared to the human orthologues. Five antagonists inhibited canine P2X4 receptors, with 1-(2,6-dibromo-4-isopropyl-phenyl)-3-(3-pyridyl)urea displaying reduced sensitivity and potency at canine P2X4 receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。