Hobit and Blimp-1 regulate TRM abundance after LCMV infection by suppressing tissue exit pathways of TRM precursors

Hobit 和 Blimp-1 通过抑制 TRM 前体的组织出口途径来调节 LCMV 感染后的 TRM 丰度

阅读:5
作者:Loreto Parga-Vidal, Renske L R E Taggenbrock, Ammarina Beumer-Chuwonpad, Hajar Aglmous, Natasja A M Kragten, Felix M Behr, Astrid A Bovens, Rene A W van Lier, Regina Stark, Klaas P J M van Gisbergen

Abstract

Tissue-resident memory T cells (Trm) are retained in peripheral tissues after infection for enhanced protection against secondary encounter with the same pathogen. We have previously shown that the transcription factor Hobit and its homolog Blimp-1 drive Trm development after viral infection, but how and when these transcription factors mediate Trm formation remains poorly understood. In particular, the major impact of Blimp-1 in regulating several aspects of effector T-cell differentiation impairs study of its specific role in Trm development. Here, we used the restricted expression of Hobit in the Trm lineage to develop mice with a conditional deletion of Blimp-1 in Trm, allowing us to specifically investigate the role of both transcription factors in Trm differentiation. We found that Hobit and Blimp-1 were required for the upregulation of CD69 and suppression of CCR7 and S1PR1 on virus-specific Trm precursors after LCMV infection, underlining a role in their retention within tissues. The early impact of Hobit and Blimp-1 favored Trm formation and prevented the development of circulating memory T cells. Thus, our findings highlight a role of Hobit and Blimp-1 at the branching point of circulating and resident memory lineages by suppressing tissue egress of Trm precursors early during infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。