Antimicrobial-Resistant Escherichia coli Survived in Dust Samples for More than 20 Years

耐药大肠杆菌在灰尘样本中存活了 20 多年

阅读:11
作者:Jochen Schulz, Inga Ruddat, Jörg Hartung, Gerd Hamscher, Nicole Kemper, Christa Ewers

Abstract

In a retrospective study, 119 sedimentation dust samples stored between five and 35 years from various barns of intensive livestock farming were evaluated for the occurrence of cultivatable Escherichia coli. Growth of E. coli occurred in 54 samples. Successful cultivation was achieved in samples from as early as 1994. The frequency of detection increased from earlier to later time periods, but the concentrations, which ranged between 3.4 × 10(2) and 1.1 × 10(5) colony-forming units per gram, did not correlate with sample age (Spearman rank correlation; p > 0.05). We hypothesize that E. coli cells survived in dust samples without cell division because of the storage conditions. Dry material (dust) with low water activities (arithmetic mean < 0.6) and storage at 4°C in the dark likely facilitated long-term survival. E. coli were isolated on MacConkey agar with and without ciprofloxacin supplementation. For 110 isolates (79 from non-supplemented media and 31 from supplemented media), we determined the E. coli phylotype and antimicrobial resistance. Six phylogenetic groups were identified. Phylogroups A and B1 predominated. Compared to group A, phylogroup B1 was significantly associated with growth on ciprofloxacin-supplemented media (chi-square test, p = 0.003). Furthermore, the antibiotic resistance profiles determined by a microdilution method revealed that isolates were phenotypically resistant to at least one antimicrobial substance and that more than 50% were resistant to a minimum of five out of 10 antibiotics tested. A linear mixed model was used to identify factors associated with the number of phenotypic resistances of individual isolates. Younger isolates and isolates from fattening poultry barns tended to be resistant to significantly more antibiotics than older isolates and those from laying-hen houses (p = 0.01 and p = 0.02, respectively). Sample origin and storage conditions may have influenced the number of antimicrobial resistances. Overall, we found that under particular conditions, dust from farm animal houses can be reservoirs for antimicrobial-resistant E. coli for at least 20 years. The survival strategies that allow E. coli to survive such long periods in environmental samples are not fully understood and could be an interesting research topic for future studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。