Chitosan oligosaccharides alleviate macrophage pyroptosis and protect sepsis mice via activating the Nrf2/GPX4 pathway

壳寡糖通过激活Nrf2/GPX4通路减轻巨噬细胞焦亡并保护脓毒症小鼠

阅读:9
作者:Zhong-Xia Lu, Lu-Xin Liu, Zheng Fu, Sheng-Nan Wang, Chang-Ning Sun, Wen-Gong Yu, Xin-Zhi Lu

Abstract

In the process of sepsis, excessive occurrence of pyroptosis, a form of programmed cell death acting as a defense mechanism against pathogens, can disrupt immune responses, thus leading to tissue damage and organ dysfunction. Chitosan oligosaccharide (COS), derived from chitosan degradation, has demonstrated diverse beneficial effects. However, its impact on sepsis-induced pyroptosis remains unexplored. In the present study, ATP/LPS was utilized to induce canonical-pyroptosis in THP-1 cells, while bacterial outer membrane vesicles (OMV) were employed to trigger non-canonical pyroptosis in RAW264.7 cells. Our results revealed a dose-dependent effect of COS on both types of pyroptosis. This was evidenced by a reduction in the expression of pro-inflammatory cytokines, as well as crucial regulatory proteins involved in pyroptosis. In addition, COS inhibited the cleavage of caspase-1 and GSDMD, and reduced ASC oligomerization. The underlying mechanism revealed that COS acts an antioxidant, reducing the release of pyroptosis-induced ROS and malondialdehyde (MDA) by upregulation the expression and promoting the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2), which led to an elevation of glutathione peroxidase 4 (GPX4) and superoxide dismutase (SOD). Notably, the actions of COS were completely reversed by the Nrf2 inhibitor. Consequently, COS intervention increased the survival rate of sepsis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。