The lymph node stromal laminin α5 shapes alloimmunity

淋巴结基质层粘连蛋白α5形成同种免疫

阅读:6
作者:Lushen Li, Marina W Shirkey, Tianshu Zhang, Yanbao Xiong, Wenji Piao, Vikas Saxena, Christina Paluskievicz, Young Lee, Nicholas Toney, Benjamin M Cerel, Qinshan Li, Thomas Simon, Kyle D Smith, Keli L Hippen, Bruce R Blazar, Reza Abdi, Jonathan S Bromberg

Abstract

Lymph node stromal cells (LNSCs) regulate immunity through constructing lymphocyte niches. LNSC-produced laminin α5 (Lama5) regulates CD4+ T cells but the underlying mechanisms of its functions are poorly understood. Here we show that depleting Lama5 in LNSCs resulted in decreased Lama5 protein in the LN cortical ridge (CR) and around high endothelial venules (HEVs). Lama5 depletion affected LN structure with increased HEVs, upregulated chemokines, and cell adhesion molecules, and led to greater numbers of Tregs in the T cell zone. Mouse and human T cell transendothelial migration and T cell entry into LNs were suppressed by Lama5 through the receptors α6 integrin and α-dystroglycan. During immune responses and allograft transplantation, depleting Lama5 promoted antigen-specific CD4+ T cell entry into the CR through HEVs, suppressed T cell activation, and altered T cell differentiation to suppressive regulatory phenotypes. Enhanced allograft acceptance resulted from depleting Lama5 or blockade of T cell Lama5 receptors. Lama5 and Lama4/Lama5 ratios in allografts were associated with the rejection severity. Overall, our results demonstrated that stromal Lama5 regulated immune responses through altering LN structures and T cell behaviors. This study delineated a stromal Lama5-T cell receptor axis that can be targeted for immune tolerance modulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。