Boosting piezoelectric properties of PVDF nanofibers via embedded graphene oxide nanosheets

通过嵌入氧化石墨烯纳米片增强 PVDF 纳米纤维的压电性能

阅读:9
作者:Mahmoud Salama, Aya Hamed, Sara Noman, Germein Magdy, Nader Shehata, Ishac Kandas

Abstract

Tremendous research efforts have been directed toward developing polymer-based piezoelectric nanogenerators (PENG) in a promising step to investigate self-charging powered systems (SCPSs) and consequently, support the need for flexible, intelligent, and ultra-compact wearable electronic devices. In our work, electrospun polyvinylidene fluoride (PVDF) nanofiber mats were investigated while graphene oxide (GO) was added with different concentrations (from 0 to 3 wt.%). Sonication treatment was introduced for 5 min to GO nanosheets before combined PVDF solution. A comprehensive study was conducted to examine the GO incremental effect. Microstructural and mechanical properties were examined using a scanning electron microscope (SEM) and a texture analyzer. Moreover, piezoelectric properties were assessed via various tests including impulse response, frequency effect, d33 coefficient, charging and discharging analysis, and sawyer tower circuit. Experimental results indicate that incorporation of GO nanosheets enhances piezoelectric properties for all concentrations, which was linked to the increase in β phase inside the nanofibers, which has a significant potential of enhancing nanogenerator performance. PVDF-GO 1.5 wt.% shows a notably higher enhancing effect where the electroactive β-phase and γ-phase are recorded to be boosted to ~ 68.13%, as well as piezoelectric coefficient (d33 ~ 55.57 pC/N). Furthermore, increasing impact force encouraged the output voltage. Also noted that the delivered open circuit voltage is ~ 3671 V/g and the power density is ~ 150 µw/cm2. It was observed that GO of concentration 1.5 wt.% recorded a conversion efficiency of ~ 74.73%. All results are in line, showing better performance for PVDF-GO 1.5 wt.% for almost all concentrations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。