Development of a Microfluidic Flow Cytometer with a Uniform Optical Field (Uni-μFCM) Enabling Quantitative Analysis of Single-Cell Proteins and Its Applications in Leukemia Gating, Tumor Classification, and Hierarchy of Cancer Stem Cells

开发具有均匀光场的微流体流式细胞仪 (Uni-μFCM),实现单细胞蛋白的定量分析及其在白血病门控、肿瘤分类和癌症干细胞层次结构中的应用

阅读:7
作者:Chiyuan Gao, Ting Zhang, Yuanchen Wei, Qinghua Liu, Liangliang Ma, Mengge Gao, Xiaosu Zhao, Yixiang Wang, Deyong Chen, Lichao Sun, Junbo Wang, Jian Chen

Abstract

Fast and quantitative estimation of single-cell proteins with various distribution patterns remains a technical challenge. Here, a microfluidic flow cytometer with a uniform optical field (Uni-μFCM) was developed, which enabled the translation of multicolor fluorescence signals of bound antibodies into targeted protein numbers with arbitrary distributions of biological cells. As the core of Uni-μFCM, a uniform optical field for optical excitation and fluorescence detection was realized by adopting a microfabricated metal window to shape the optical beam for excitation, which was modeled and validated by both numerical simulation and experimental characterization. After the validation of Uni-μFCM in single-cell protein quantification by measuring single-cell expressions of three transcriptional factors from four cell lines of variable sizes and origins, Uni-μFCM was applied to (1) quantify membrane and cytoplasmic markers of myeloid and lymphocytic leukocytes to classify cell lines and normal and patient blood samples; (2) measure single-cell expressions of key cytokines affiliated with gene stabilities, differentiating paired oral and colon tumor cell lines with varied malignancies, and (3) quantify single-cell stemming markers of liver tumor cell lines, cell subtypes, and liver patient samples to determine a variety of lineage hierarchy. By quantitatively assessing complex cellular phenotypes, Uni-μFCM substantially expanded the phenotypic space accessible to single-cell applications in leukemia gating, tumor classification, and hierarchy determination of cancer stem cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。