Evidence for a role of Nav1.6 in facilitating increases in neuronal hyperexcitability during epileptogenesis

有证据表明 Nav1.6 在促进癫痫发生过程中神经元兴奋性增加方面发挥了作用

阅读:7
作者:Nicholas J Hargus, Aradhya Nigam, Edward H Bertram 3rd, Manoj K Patel

Abstract

During epileptogenesis a series of molecular and cellular events occur, culminating in an increase in neuronal excitability, leading to seizure initiation. The entorhinal cortex has been implicated in the generation of epileptic seizures in both humans and animal models of temporal lobe epilepsy. This hyperexcitability is due, in part, to proexcitatory changes in ion channel activity. Sodium channels play an important role in controlling neuronal excitability, and alterations in their activity could facilitate seizure initiation. We sought to investigate whether medial entorhinal cortex (mEC) layer II neurons become hyperexcitable and display proexcitatory behavior of Na channels during epileptogenesis. Experiments were conducted 7 days after electrical induction of status epilepticus (SE), a time point during the latent period of epileptogenesis and before the onset of seizures. mEC layer II stellate neurons from post-SE animals were hyperexcitable, eliciting action potentials at higher frequencies compared with control neurons. Na channel currents recorded from post-SE neurons revealed increases in Na current amplitudes, particularly persistent and resurgent currents, as well as depolarized shifts in inactivation parameters. Immunocytochemical studies revealed increases in voltage-gated Na (Nav) 1.6 isoform levels. The toxin 4,9-anhydro-tetrodotoxin, which has greater selectivity for Nav1.6 over other Na channel isoforms, suppressed neuronal hyperexcitability, reduced macroscopic Na currents, persistent and resurgent Na current densities, and abolished depolarized shifts in inactivation parameters in post-SE neurons. These studies support a potential role for Nav1.6 in facilitating the hyperexcitability of mEC layer II neurons during epileptogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。