Local and Systemic Immune Dysregulation Alters Glioma Growth in Hyperglycemic Mice

局部和全身免疫失调改变高血糖小鼠的神经胶质瘤生长

阅读:9
作者:Ian Y Zhang #, Hui Zhou #, Huili Liu #, Leying Zhang, Hang Gao, Shunan Liu, Yanyan Song, Darya Alizadeh, Hongwei Holly Yin, Raju Pillai, Behnam Badie

Conclusions

Hyperglycemia may enhance glioma growth through promotion of RAGE expression and suppression of antitumor immune responses. However, abrogation of the proinflammatory milieu in tumors may also dampen the growth of inflammatory glioma subtypes in the brains of diabetic mice. This dichotomy in glioma growth response to hyperglycemia may partly explain why conflicting epidemiological studies show both an increased risk and a protective effect of Db in patients with malignant gliomas.

Purpose

Unlike most cancers, no clear epidemiological correlation between diabetes (Db) and malignant glioma progression exists. Because hyperglycemia activates proinflammatory pathways through the receptor for advanced glycation endproducts (RAGE), we hypothesized that Db can also promote malignant glioma progression. Experimental design: We compared the growth of two phenotypically diverse syngeneic glioma models in control and diabetic mice. Tumor growth and antitumor immune responses were evaluated in orthotopic and heterotopic models and correlated to RAGE and RAGE ligand expression.

Results

Irrespective of tumor implantation site, growth of a "classical" glioma model, GL261, increased in hyperglycemic mice and was mediated by upregulation of RAGE and its ligand, HMGB1. However, growth of a "mesenchymal" glioma subtype, K-Luc, depended on tumor implantation site. Whereas heterotopic K-Luc tumors progressed rapidly in Db mice, intracranial K-Luc tumors grew slower. We further showed that hyperglycemia inhibited the innate antitumor inflammatory responses in both models. Although this contributed to the accelerated growth of heterotopic tumors, suppression of tumor inflammatory responses dampened the growth of orthotopic K-Luc gliomas. Conclusions: Hyperglycemia may enhance glioma growth through promotion of RAGE expression and suppression of antitumor immune responses. However, abrogation of the proinflammatory milieu in tumors may also dampen the growth of inflammatory glioma subtypes in the brains of diabetic mice. This dichotomy in glioma growth response to hyperglycemia may partly explain why conflicting epidemiological studies show both an increased risk and a protective effect of Db in patients with malignant gliomas.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。