Kinetic Characterization of ASXL1/2-Mediated Allosteric Regulation of the BAP1 Deubiquitinase

ASXL1/2 介导的 BAP1 去泛素化酶变构调控的动力学表征

阅读:7
作者:Hongzhuang Peng, Joel Cassel, Daniel S McCracken, Jeremy W Prokop, Eleonora Sementino, Mitchell Cheung, Paul R Collop, Alexander Polo, Surbhi Joshi, Jacob P Mandell, Kasirajan Ayyanathan, David Hinds, S Bruce Malkowicz, J William Harbour, Anne M Bowcock, Joseph Salvino, Eileen J Kennedy, Joseph R Te

Abstract

BAP1 is an ubiquitin hydrolase whose deubiquitinase activity is mediated by polycomb group-like protein ASXL2. Cancer-related BAP1 mutations/deletions lead to loss-of-function by targeting the catalytic ubiquitin C-terminal hydrolase (UCH) or UCH37-like domain (ULD) domains of BAP1, and the latter disrupts binding to ASXL2, an obligate partner for BAP1 enzymatic activity. However, the biochemical and biophysical properties of domains involved in forming the enzymatically active complex are unknown. Here, we report the molecular dynamics, kinetics, and stoichiometry of these interactions. We demonstrate that interactions between BAP1 and ASXL2 are direct, specific, and stable to biochemical and biophysical manipulations as detected by isothermal titration calorimetry (ITC), GST association, and optical biosensor assays. Association of the ASXL2-AB box greatly stimulates BAP1 activity. A stable ternary complex is formed, comprised of the BAP1-UCH, BAP1-ULD, and ASXL2-AB domains. Stoichiometric analysis revealed that one molecule of the ULD domain directly interacts with one molecule of the AB box. Real-time kinetic analysis of the ULD/AB protein complex to the BAP1-UCH domain, based on surface plasmon resonance, indicated that formation of the ULD/AB complex with the UCH domain is a single-step event with fast association and slow dissociation rates. In vitro experiments validated in cells that the ASXL-AB box directly regulates BAP1 activity. IMPLICATIONS: Collectively, these data elucidate molecular interactions between specific protein domains regulating BAP1 deubiquitinase activity, thus establishing a foundation for small-molecule approaches to reactivate latent wild-type BAP1 catalytic activity in BAP1-mutant cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。