Determining the pharmacological potential and biological role of linear pseudoscorpion toxins via functional profiling

通过功能分析确定线性伪蝎毒素的药理潜力和生物学作用

阅读:9
作者:Pelin Erkoc, Susanne Schiffmann, Thomas Ulshöfer, Marina Henke, Michael Marner, Jonas Krämer, Reinhard Predel, Till F Schäberle, Sabine Hurka, Ludwig Dersch, Andreas Vilcinskas, Robert Fürst, Tim Lüddecke

Abstract

Arthropod venoms contain bioactive molecules attractive for biomedical applications. However, few of these have been isolated, and only a tiny number has been characterized. Pseudoscorpions are small arachnids whose venom has been largely overlooked. Here, we present the first structural and functional assessment of the checacin toxin family, discovered in the venom of the house pseudoscorpion (Chelifer cancroides). We combined in silico and in vitro analyses to establish their bioactivity profile against microbes and various cell lines. This revealed inhibitory effects against bacteria and fungi. We observed cytotoxicity against specific cell types and effects involving second messengers. Our work provides insight into the biomedical potential and evolution of pseudoscorpion venoms. We propose that plesiotypic checacins evolved to defend the venom gland against infection, whereas apotypic descendants evolved additional functions. Our work highlights the importance of considering small and neglected species in biodiscovery programs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。